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ABSTRACT 

 

This paper relates to the first centenary of the prediction of the existence of gravitational waves by Albert Einstein in 

1916 and their prediction was experimentally confirmed in 2016 in one hundred years after the prediction. This work 

develops the theory of the wave propagation in the solids possessing the piezoelectric, piezomagnetic, and 

magnetoelectric effects as well as the piezogravitic, piezocogravitic, and gravitocogravitic effects, and the other 

exchange coeffects. Exploiting the quasi-static approximation in the theory of electromagnetism and 

gravitoelectromagnetism, the thermodynamics and the coupled equations of motion are developed in the common form. 

To simplify the problem of the wave propagation in these solids, the shear-horizontal (SH) wave propagation in the 

transversely isotropic materials was then treated. Considering all the aforementioned effects and coeffects, the explicit 

forms of the propagation velocities of the bulk and new surface acoustic waves (SH-BAW and new SH-SAW coupled 

with four potentials) were theoretically obtained. This theoretical work has the additional purpose to stimulate 

experimental measurements of all the necessary material parameters when a solid possesses all the effects and coeffects 

including the ones from the theory of gravitoelectromagnetism.   

 

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 75.20.En, 75.80.+q, 81.70.Cv, 96.20.Jz, 

04.30.-w, 04.90.+e, 95.30.Sf  

Keywords: transversely isotropic solids, piezoelectric and piezomagnetic effects, magnetoelectric effect and other 

exchange effects, piezogravitic and piezocogravitic effects, new nondispersive SH-SAW.  
 

 

INTRODUCTION  

 

Before to start any description of very complicated 

problem of wave propagation in solids possessing many 

effects that can be taken into account, it is necessary to 

fist review the history and evolution of the discovery of 

different effects that can be revealed in the studied solids. 

It is necessary to state right away that the studied solids 

can simultaneously have the following known different 

effects: piezoelectric, piezomagnetic, magnetoelectric, 

piezogravitic, piezocogravitic, gravitocogravitic effects. 

These solids can also possess several coeffects that can be 

studied and discussed below. So, it is possible to review 

the problems of wave propagation from simple to more 

complicated.  
 

The well-known piezoelectric effect can cause the 

propagation of the shear-horizontal surface acoustic 

waves (SH-SAWs) in the transversely isotropic (6 mm) 

piezoelectrics. This is the simplest case of SH-SAWs 

known as the surface Bleustein-Gulyaev (BG) wave 

independently discovered by Bleustein (1968) and 

Gulyaev (1969) in their developed theories to the end of 

the 1960s. There is also the second SH-SAW theoretically 

discovered by Bleustein (1968) for the other electrical 

boundary conditions. This SH-SAW is frequently called 

the surface Bleustein wave. However, the author of this 

theoretical report can use the words of the slower and 

faster surface BG-waves instead of the surface Bleustein-

Gulyaev wave and surface Bleustein wave, respectively, 

to distinguish them from each other. The speeds of both 

the SH-SAWs must be slightly slower than the speed of 

the shear-horizontal bulk acoustic wave (SH-BAW) and 

the existence of the SH-SAWs demonstrates the fact of 

the instability of the SH-BAW for certain cuts and 

propagation directions in suitable solids. Studying the 

wave propagation in piezoelectrics, the well-known 

equations of electrostatics in the quasi-static 

approximation are used because the speed of light is 

approximately five orders faster than any acoustic wave 

speed. The slower and faster surface BG-waves can also 

propagate in piezomagnetics possessing the 

piezomagnetic effect when the piezoelectric and electric 

constants are substituted by the piezomagnetic and 

magnetic constants, respectively. Here the equations of 

magnetostatics in the quasi-static approximation are used 

for the same reason mentioned above.  Corresponding author e-mail:  aazaaz@inbox.ru 
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There are also piezoelectromagnetics (magneto-

electroelastics) as a class of magnetoelectric materials that 

can simultaneously possess both the piezoelectric and 

piezomagnetic effects resulting in the existence of the 

magnetoelectric effect. In these smart materials there is a 

possibility to control the magnetic subsystem by changes 

in the electric subsystem via the mechanical subsystem, or 

vice versa. Smart transversely isotropic (6 mm) 

piezoelectromagnetic (PEM) materials were only recently 

exhaustively treated regarding to the problems of different 

instabilities of the SH-BAW, i.e. the existence of various 

SH-SAWs when different electrical and magnetic 

boundary conditions are applied. Indeed, the equations of 

the electrostatics and magnetostatics must be also used for 

the problem of wave propagation in 

piezoelectromagnetics. There is the single review 

(Zakharenko, 2013a) concerning the problems of the 

wave propagation in piezoelectromagnetics. One decade 

ago Melkumyan (2007) has discovered several SH 

acoustic waves propagating in the transversely isotropic 

piezoelectromagnetics. However, only three of them can 

be called the Melkumyan SH-SAWs: the surface 

Bleustein-Gulyaev-Melkumyan (BGM) wave, the 

piezoelectric exchange surface Melkumyan (PEESM) 

wave, and the piezomagnetic exchange surface 

Melkumyan (PMESM) wave. The first Melkumyan PEM-

SH-SAW is called the BGM wave to have an analogy 

with the surface BG-wave (Bleustein, 1968; Gulyaev, 

1969). Following the theoretical work by Melkumyan 

(2007), several new PEM-SH-SAWs were also 

discovered in theoretical work (Zakharenko, 2010; 

Zakharenko, 2013b; Zakharenko, 2015a,b). It is now 

possible to state that more than ten new PEM-SH-SAWs 

can propagate in the transversely isotropic 

piezoelectromagnetics in contrast to two SH-SAWs 

existing in pure piezoelectrics or pure piezomagnetics. 

This is due to the fact of competition of three different 

effects mentioned above that can coexist in 

piezoelectromagnetics. The magnetoelectric effect is 

extremely weak effect compared with the piezoelectric or 

piezomagnetic effect. However, it can cause a dramatic 

influence on the existence of some new SH-SAWs 

(Zakharenko, 2015b).  
 

It is obvious that any gravitational effect or relevant 

exchange coeffect can be extremely weak similar to the 

magnetoelectric effect. However, it is possible that 

consideration of some extremely weak effects can 

disclose the existence of some relevant new SH-SAWs 

that can propagate in the apt solids. Indeed, the 

gravitational effect can be readily recordable when very 

massive bodies (preferably solids) are treated. For 

instance, in the two-body system such as Moon-Earth, a 

slight but remarkable attraction of Earth surface towards 

Moon can be experimentally observed when Moon is 

orbiting Earth. Concerning the microworld when 

microwaves are propagating in a bulk solid or on the solid 

surface, it is thought that it is hard to record any changes 

caused by extremely small possible perturbations of local 

gravitational fields. Note that solids for the problem of 

acoustic wave propagation are naturally treated as 

continua but not discrete materials consisting of atoms. 

So, it is necessary to theoretically demonstrate that in 

solid continua some extremely weak gravitational effects 

or some relevant coeffects can cause the existence of 

some corresponding new SH-SAWs. This can be similar 

to the new SH-SAW existence caused by the extremely 

weak magnetoelectric effect in piezoelectromagnetics.  
 

 

For the purpose of a deep study of the influence of some 

relevant gravitational effects on the existence of new SH-

SAWs, it is natural to exploit the known equations of the 

gravitoelectromagnetism. These equations are similar to 

the well-known equations of electromagnetism 

(Heaviside, 1893; Maxwell, 1954; Jefimenko, 1992; 

Jefimenko, 2000; Jefimenko, 2006; Assis, 1994; Assis, 

1999). One century ago, namely in 1916 Albert Einstein 

has predicted the existence of gravitational waves in the 

context of his theory of general relativity (Einstein, 1916). 

It is also known that gravitational waves propagate in a 

vacuum with the speed of light, namely the speed of the 

electromagnetic waves. So, the quasistatic approximation 

incorporating gravitational effects is fitting here as well. 

Using the equations of the gravitoelectromagnetism 

instead of the equations of the electromagnetism, one can 

find that the final explicit forms obtained for the 

propagating velocities in (Melkumyan, 2007; Zakharenko, 

2010; Zakharenko, 2013a,b; Zakharenko, 2015a,b) can be 

readily rewritten down. Indeed, the utilization of the 

piezogravitic, piezocogravitic, and gravitocogravitic 

effects instead of the piezoelectric, piezomagnetic, and 

magnetoelectric effects, respectively, results in a 

substitution of piezoelectric, piezomagnetic, electric, 

magnetic, and magnetoelectric constants by the 

piezogravitic, piezocogravitic, gravitational, 

cogravitational, and gravitocogravitic constants, 

correspondingly. However, this substitution is 

questionable because anisotropic solids (monocrystals or 

composite materials) can be piezomagnetics or 

noncentrosymmetric piezoelectrics, or 

piezoelectromagnetics. This can mean that it is necessary 

to treat the gravitational exchange effects only in a coupe 

with the electromagnetic effects. Figure 1 schematically 

shows a solid continuum that can possess the mechanical, 

electrical, magnetic, gravitational (gravitoelectric), and 

cogravitational (gravitomagnetic) subsystems. Figure 1a 

shows that there is an interaction between any two 

subsystems somewhat directly (some exchange must 

occur) and via the mechanical subsystem. Figure 1b 

shows the simpler case when the gravitational or 

cogravitational subsystem can interact with the electrical 

or magnetic subsystem only via the mechanical 

subsystem.  
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Fig. 1. The schematic demonstration of possible connec-

tions among the used subsystems such as the mechanical, 

electrical, magnetic, gravitational, and cogravitational 

ones: (a) there is an interaction between each pair of 

subsystem via the mechanical one and (b) the electrical 

subsystem can interact only with the magnetic subsystem 

(or vice versa) via the mechanical one and the 

gravitational subsystem can interact only with the 

cogravitational one (or vice versa) via the mechanical 

one.  

 

Scientists have recently measured the gravitational 

equivalent of a magnetic field for the first time in a 

laboratory under certain special conditions. This effect is 

much larger than expected from general relativity. In 

general, scientists preferably study gravitational fields 

passively by observing for grasp of existing gravitational 

fields produced by large inertial masses such as stars or 

planets and there is no ability to change them, for 

instance, with magnetic fields. In his publication Füzfa 

(2016) has described one revolutionary approach for the 

creation of gravitational fields from well-controlled 

magnetic fields and observing how these magnetic fields 

could bend space-time. He has proposed a theoretical 

device based on superconducting electromagnets (modern 

technologies exhaustively used at CERN or the ITER 

reactor) for creation of detectable gravitational fields. It 

could disclose many new applications, for instance, in 

telecommunications with gravitational waves. The ability 

to produce, detect, and control gravitational fields would 

certainly be a major achievement in modern physics. So, 

scientific interest in the problem of interactions between 

the gravitational and electromagnetic waves continuously 

increases, for instance, see in (Hegarty, 1969; Kleidis et 

al., 2010; Forsberg et al., 2010). The great interest in the 

problem of the gravitational wave detection can be 

supported by the fact that the European Space Agency 

(ESA, the European Union) together with the National 

Aeronautics and Space Administration (NASA, the 

United States) have collaborated a series of expensive 

space experiments called the Laser Interferometer Space 

Antenna (LISA). The LISA is a proposed space-based 

piezoelectric device (Möhle, 2013) for gravitational 

waves’ detection in the low frequency range from 0.1 

mHz to 1.0 Hz that is not accessible by ground-based 

detectors. However, this expensive space journey has lost 

any financial support by the NASA. Also, in February, 

2016, it was reported by Professor Dr. David Reitze, the 

executive director of the LIGO (Laser Interferometer 

Gravitational-Wave Observatory) that the gravitational 

waves were detected by the LIGO (Abbott et al., 2016). It 

is obvious that the theoretical work developed in this 

report does not require a multi-billion USD financial 

support and can be developed at an Earth laboratory, even 

in the International Space Station, Moon, or Mars.  

 

The following section deals wth the thermodynamic 

description of a piezoelectromagnetic bulk material when 

the gravitational and cogravitational forces are also taken 

into account. The third section provides both the 

differential and tensor forms for the coupled equations of 

motion concerning the case of the shear-horizontal wave 

propagation. The fourth section discusses the boundary 

conditions that can lead to the existence of new surface 

SH-waves.  

 

Thermodynamics  

 

It is natural to consider a bulk solid continuum that 

simultaneously possesses the piezoelectric, 

piezomagnetic, and magnetoelectric effects. It is natural 

to assume that the gravitational (gravitoelectric) and 
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cogravitational (gravitomagnetic) forces must be also 

considered. This complex continuum can be 

thermodynamically described by means of suitable 

thermodynamic variables and functions. Indeed, it is 

necessary to choose a thermodynamic potential to 

properly describe thermo gravitocogravitoelectro-

magnetoelastic interactions in the continuum. It is 

preferable for this case to cope with the thermodynamic 

potential called enthalpy He to obtain adiabatic rather than 

isothermal conditions. It is well known that an adiabatic 

process can be characterized by the constant entropy, S = 

S0 = const, and this thermodynamic variable illuminates a 

level of disorder in the system. Treating a linear case, it is 

possible to consider only linear terms in a Taylor series 

for the enthalpy He relative to an equilibrium condition 

He(S0). It is apparent that S = S0 = const actually gives 

zero change, namely dS = 0. So, this thermodynamic 

variable can be excluded from the further analysis, for 

instance, see in Zakharenko (2010).  

 

For this case, these linear terms in a Taylor series for the 

suitable thermodynamic potential can contain the 

following thermodynamic variables frequently written in 

the tensor forms: strain ηij, electrical field Ei, magnetic 

field Hi, gravitational (gravitoelectric) field GEi, and 

cogravitational (gravitomagnetic) field GHi, where the 

indexes i and j run from 1 to 3. Energetic terms of such 

complex system described by a thermodynamic potential 

can be naturally coupled with the following subsystems 

shown in Figure 1: elastic subsystem (thermodynamic 

variable ηij), electric subsystem (variable Ei), magnetic 

subsystem (variable Hi), gravitational subsystem (variable 

GEi), cogravitational subsystem (variable GHi) and 

thermal subsystem (entropy S).  

 

Therefore, for the fitting thermodynamic potential T, one 

can write the following:  SGHGEHEfT kkkkkl ,,,,,  

and  0d,d,d,d,d,dd 0  SGHGEHEfT kkkkkl . 

Next, it is natural that for the problem of acoustic wave 

propagation in such continua, it is preferable to use the 

following thermodynamic functions: stress ζij, electrical 

displacement (induction) Di, magnetic displacement 

(induction or flux) Bi, gravitational displacement 

(gravitoelectric induction) GDi, and cogravitational 

displacement (gravitomagnetic induction) GBi. These five 

thermodynamic functions depend on five independent 

thermodynamic variables described above as follows:  
 

 kkkkklij GHGEHEf ,,,,1   , 

 kkkkkli GHGEHEfD ,,,,2  , 

 kkkkkli GHGEHEfB ,,,,3  , 

 kkkkkli GHGEHEfGD ,,,,4  , 

 kkkkkli GHGEHEfGB ,,,,5  .  

 

In this linear case, the coupled constitutive relations can 

be therefore written as follows:  

 

kkijkkijkkijkkijklijklij GHfGEgHhEeC    (1) 

kikkikkikkikklikli GHGEHEeD    (2) 

kikkikkikkikklikli GHGEHEhB    (3) 

kikkikkikkikklikli GHGEHEgGD    (4) 

kikkikkikkikklikli GHGEHEfGB    (5) 

 

In expressions from (1) to (5), the used indices i, j, k, and 

l run from 1 to 3. The first equation indicates that the 

mechanical thermodynamic function such as the stress ζij 

also depends on the corresponding factors at the 

independent thermodynamic mechanical (ηij), electrical 

(Ei), magnetic (Hi), gravitational (GEi), and 

cogravitational (GHi) variables. These factors represent 

the corresponding proportionality coefficients for the 

linear case and are thermodynamically defined below. 

They are called the elastic stiffness constants Cijkl, 

piezoelectric constants ekij, piezomagnetic coefficients hkij, 

piezogravitic constants gkij, and piezocogravitic 

coefficients fkij.  

 

In equations (2) and (3), the thermodynamic functions 

such as the electrical and magnetic displacements (Di and 

Bi) also depend on the corresponding factors at the 

thermodynamic variables and they can be divided into 

two groups. The first group is for the dielectric 

permittivity coefficients (electrical constants) εik, 

magnetic permeability coefficients (magnetic constants) 

μik, and electromagnetic constants αik. The second group is 

for the following exchange tensors: material exchange 

constants δik, ξik, βik, and λik that symbolize possible 

exchanges between the electrical and magnetic 

subsystems on one side and the gravitational and 

cogravitational subsystems on the other side. It is 

necessary to keep in mind that these exchange tensors 

must be nonzero even in the case when their possible 

values are very small. However, these small material 

parameters must be taken into account in the common 

case shown in figure 1a and can be neglected for the case 

shown in figure 1b. It was found that consideration of 

very small but nonzero material parameters can be very 

important. This fact was demonstrated in work 

(Zakharenko, 2010; Zakharenko, 2013b; Zakharenko, 

2015a,b) concerning the wave propagation in 

piezoelectromagnetics when the extremely small 

electromagnetic constant α can cause the existence of 

several new SH-SAWs. In the common case, the tensor of 

the electromagnetic constants αik is non symmetric in 

contrast to the symmetric tensors of the electrical εik and 

magnetic μik constants. However, for the cubic and 

transversely isotropic (6 mm) materials the tensor αik is 

symmetric (Schmid, 2008; Rivera, 2009). This symmetry 
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can be also applied to other exchange tensors such as δik, 

ξik, βik, and λik in the first approximation, assuming that 

the values of the material parameters of the tensors can be 

very small. Similar to the exchange between the electrical 

and magnetic subsystems characterized by the tensor of 

the electromagnetic constants αik there must also exist an 

exchange between the gravitational and cogravitational 

subsystems. This exchange is taken into account by the 

presence of the exchange tensor ϑik in equations (4) and 

(5). The tensor ϑik can be called the tensor of the 

gravitocogravitic constants and it is possible to assume 

that the tensors αik and ϑik can be symmetric for the same 

materials. Equations (4) and (5) also contain the tensors of 

the gravitic and cogravitic constants, γik and εik, 

respectively. It is possible to require that they are 

symmetric similar to the tensors of εik and μik.  

 

In five equations written above, the first independent 

thermodynamic variable such as the strain tensor ηij can be 

defined by the following well known relation between the 

strain and the mechanical displacements for small 

perturbations:  ijjiij xUxU  5.0 , where the 

indices i and j also run from 1 to 3. So, this relation 

represents the dependence of the strain tensor components 

ηij on the corresponding partial first derivatives of the 

mechanical displacement components U1, U2, and U3 with 

respect to the real space components x1, x2, and x3. Each 

mechanical displacement component is directed along the 

corresponding real space component for the rectangular 

coordinate system shown in Figure 2.  

 

 

Fig. 2. The rectangular coordinate system. The coordinate 

beginning is situated at the vacuum-solid interface. The 

propagation direction is managed along the x1-axis. The 

surface normal is directed along the x3-axis. The 6-fold 

symmetry axis of the studied transversely isotropic (6 

mm) material is parallel to the x2-axis.  

 

In equations from (1) to (5), the other independent 

thermodynamic variables such as the electrical field Ei, 

magnetic field Hi, gravitational field GEi, and 

cogravitational field GHi can be also defined by 

corresponding partial first derivatives. Using the 

corresponding potentials (electrical potential θ, magnetic 

potential ψ, gravitational potential Φ, and cogravitational 

potential Ψ) in the quasi-static (irrotational field) 

approximation, the components of all the fields are 

determined as the following partial first derivatives with 

respect to the real space components x1, x2, and x3: 

ii xE   , 
ii xH   , 

ii xΦGE  , 

ii xΨGH  . It is natural to exploit the quasi-static 

approximation when all the derivatives with respect to the 

time t in the corresponding Maxwell equations of 

electromagnetism (or the corresponding equations of the 

gravitoelectromagnetism) are omitted because the speed 

of the electromagnetic (or gravitational) wave is 

approximately five orders larger than the speed of any 

elastic wave (Dieulesaint and Royer, 1980; Auld, 1990; 

Zakharenko, 2010).  

 

In the constitutive relations from (1) to (5), all the 

material tensors such as Cijkl, ekij, hkij, gkij, fkij, εik, μik, αik, 

γik, εik, ϑik, δik, ξik, βik, λik can be thermodynamically 

expressed. For the thermodynamic definition of the elastic 

stiffness constants Cijkl, these material parameters can be 

naturally defined from expression (1) as follows:  

 

const,,, 

















GHGEHEkl

ij

ijklC



   (6) 

 

Thermodynamic definition (6) of the elastic stiffness 

constants Cijkl states that they can be determined at 

constant electrical, magnetic, gravitational, and 

cogravitational fields. Symmetry arguments allow some 

simplifications of the quantity of the Cijkl because the 

stress and strain tensors are symmetric: ζij = ζji and ηij = 

ηji. Therefore, the stiffness tensor Cijkl must also possess a 

corresponding degree of symmetry resulting in the 

following simplifications:  

 

lkjijilklkijijlkkljijiklklijijkl CCCCCCCC   (7) 

 

Using Voigt’s notation, (3×3×3×3) tensor form (6) for the 

elastic stiffness constants Cijkl can be rewritten in a form 

of (6×6) symmetric matrix (Dieulesaint and Royer, 1980; 

Auld, 1990; Zakharenko, 2010). The transformation 

procedure of a tensor form into a matrix is wellknown. 

For this purpose, the following rules are used for the 

indices: 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 

6 and therefore, ijkl → PQ and Cijkl → CPQ, where the 

indices P and Q run from 1 to 6.  

 

With equations from (1) to (5), the thermodynamic 

description of the piezoelectric constants ekij, 

piezomagnetic coefficients hkij, piezogravitic constants 

gkij, and piezocogravitic coefficients fkij can be 

correspondingly given by the following definitions:  

 

const,,,const,,, 
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


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


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






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GHGEHEkl

i
ikl

GHGEHk

ij

ijk

D
e

E
e







 (8) 
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   The transversely isotropic  

      material of 6 mm class 



Canadian Journal of Pure and Applied Sciences 4016 

const,,,const,,, 
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

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








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







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GHGEHEkl

i
ikl
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ij

ijk
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h




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 (9) 

const,,,const,,, 
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 (10) 

const,,,const,,, 
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
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GHGEHEkl
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GEHEk

ij
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f
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





 (11) 

 

It is necessary to state that the quantities of the tensors 

hkij, ekij, gkij, and fkij can be decreased. The symmetry 

arguments such as ζij = ζji and ηij = ηji can also 

demonstrate the corresponding degrees of symmetry for 

the hkij, ekij, gkij, and fkij. The symmetry influences allow 

the existence of the following equalities:  

 

jikkjiijkkij eeee      (12) 

jikkjiijkkij hhhh      (13) 

jikkjiijkkij gggg      (14) 

jikkjiijkkij ffff      (15) 

 

Exploiting Voigt’s notation, all of the (3×3×3) tensor 

forms for the hkij, ekij, gkij, and fkij can be then rewritten as 

the asymmetric (6×3) or (3×6) matrices: ekij → ekP or eijk 

→ ePk, hkij → hkP or hijk → hPk, gkij → gkP or gijk → gPk, fkij 

→ fkP or fijk → fPk, where the index P runs from 1 to 6.   

Next, the rest material tensors such as εik, μik, αik, γik, εik, 

ϑik, δik, ξik, βik, λik can be divided into three groups. The 

first group (εik, μik, αik) is for the electrical and magnetic 

subsystems and their interaction. The second (γik, εik, ϑik) 

is for the gravitational and cogravitational subsystems and 

their interaction. Thus, the third group contains the rest 

four exchange tensors. With the first group, the 

thermodynamic definitions for the dielectric permittivity 

coefficients εik, magnetic permeability coefficients μik, 

electromagnetic constants αik (see equations (2) and (3)) 

read:  
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In the thermodynamic relations (16) and (17), the 

constants εik and μik represent symmetric tensors of the 

second rank (matrices): 
kiik    and 

kiik   . It is also 

natural to treat 
kiik    because it is symmetric for the 

cubic and transversely isotropic (6 mm) materials 

(Schmid, 2008; Rivera, 2009). Indeed, the components of 

the tensors εik, μik, and αik are naturally written as (3×3) 

matrices (Schmid, 2008; Rivera, 2009; Zakharenko, 

2010).   

 

With expressions (4) and (5), the second group of the 

material tensors of the gravitic constants γik and cogravitic 

constants εik can be also written as (3×3) symmetric 

matrices: 
kiik    and 

kiik   . Also, it is possible also 

to treat the tensor of the gravitocogravitic constants ϑik as 

symmetric for cubic and transversely isotropic (6 mm) 

materials. The thermodynamically defined as follows:   
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In the rest third group there are four exchange tensors 

such as δik, ξik, βik, λik. They are present in expressions 

from (2) to (5) of the constitutive relations and manifest 

possible exchange mechanisms between the 

electromagnetism and gravitoelectromagnetism. One has 

to be sure that some exchange occurs because there are 

recently performed experiments (Füzfa, 2016) in a 

laboratory on Earth concerning the evidence of creation of 

gravitational fields from well-controlled magnetic fields. 

So, it is even possible to require that the exchange tensors 

δik, ξik, βik, and λik must be also symmetric at least for the 

cubic and transversely isotropic (6 mm) materials. This 

requirement is enough for this study because it deals for 

simplicity with the 6 mm hexagonal materials. 

Consequently, the rest exchange tensors are 

thermodynamically defined as follows:   
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This study deals with wave propagation in anisotropic 

solid continua, i.e. crystals. This means that the 

propagation velocity must be different for different 

propagation directions in crystals. In general, all the 

material parameters are obtained in a crystallographic 

coordinate system that can naturally provide minimum set 

of independent material constants for simplicity. This 

study relates to surface acoustic SH-wave propagation 

coupled with all the potentials (electrical potential θ, 

magnetic potential ψ, gravitational potential Φ, and 

cogravitational potential Ψ) in such smart materials. 

However, surface SH-waves can be supported only in 

suitable propagation directions. It is necessary to rotate 

around the x1-axis, x2-axis, or x3-axis in order to obtain a 

new propagation direction in the new suitable coordinate 

system called the work coordinate system. The new 

propagation direction must be directed along the x1-axis in 

the work coordinate system. This situation requires a 

recalculation of all the values of the independent material 

constants. Therefore, the number of independent material 

constants and their values must be recalculated. It is 

obvious that the values of the new material constants are 

obtained using the values of the old ones. Exploiting the 

rules for tensor transformations (Dieulesaint and Royer, 

1980; Auld, 1990; Zakharenko, 2010), some new values 

of the material constants with the indexes i, j, k, and l can 

be obtained by application of the transformation matrices 

such as aim, ajn, akp, and alq to the original values of the 

material constants with the indexes m, n, p, and q. 

Therefore, the transformation formulae for all the material 

tensors introduced above read:  

 

mnpqlqkpjnimijkl CaaaaC     (26) 

mnpkpjnimijk eaaae      (27) 

mnpkpjnimijk haaah      (28) 

mnpkpjnimijk gaaag      (29) 

mnpkpjnimijk faaaf      (30) 

mnjnimij aa        (31) 

mnjnimij aa       (32) 

mnjnimij aa       (33) 

mnjnimij aa        (34) 

mnjnimij aa       (35) 

mnjnimij aa       (36) 

mnjnimij aa       (37) 

mnjnimij aa        (38) 

mnjnimij aa       (39) 

mnjnimij aa       (40) 

So, all the properly transformed material constants given 

by transformations from (26) to (40) will be used in the 

following section. The following section provides both 

the differential and tensor form of the coupled equations 

of motion. The equations of motion must be resolved for 

construction of apt boundary conditions’ determinants for 

determination of propagation velocity. To obtain the 

propagation velocity based on the thermodynamic 

principles developed in this section is the main purpose of 

this theoretical investigation.  

 

Coupled equations of motion  

 

One of the common work tools in the physical acoustics is 

the application of the quasi-static approximation because 

the speed of the electromagnetic wave or gravitational 

wave is approximately five orders larger than the speed of 

any acoustic wave. Indeed, the acoustic waves 

propagating in solids are extremely slow in comparison 

with the electromagnetic (or gravitational) wave 

propagating in the same material. However, propagation 

of the acoustic waves in suitable solid continua can be 

naturally coupled with the electrical (θ), magnetic (ψ), 

gravitational (Φ), and cogravitational (Ψ) potentials in the 

quasi-static approximation. Using the four field equations 

of his electromagnetic theory, Maxwell has creatively 

formulated the laws of electrostatics, magnetostatics, and 

electromagnetism. The electrostatic and magnetostatic 

equilibrium equations can be written using the differential 

forms of the corresponding Maxwell equations which can 

be written as follows: 0div D  and 0div B . The 

first equality with the electrical displacement vector D 

represents Gauss’s law without free charge and currents 

and the second equality represents a divergence of the 

magnetic displacement vector B. Using the analogy 

(Heaviside, 1893; Maxwell, 1954; Assis, 1994; Assis, 

1999; Jefimenko, 1992; Jefimenko, 2000; Jefimenko, 

2006) between the electromagnetism and 

gravitoelectromagnetism, it is possible to write down the 

gravitostatic (gravitoelectrostatic) and cogravitostatic 

(gravitomagnetostatic) equilibrium equations for the 

studied case as follows: 0div GD  and 0div GB , 

where GD and GB are the gravitational (gravitoelectrical) 

and cogravitational (gravitomagnetic) displacement 

vectors, respectively.  
 

Further exploitation of the analogy between the 

electromagnetism and gravitoelectromagnetism, the 

governing electrostatic, magnetostatic, gravitostatic, and 

cogravitostatic equilibrium equations can be respectively 

exposed in the following differential forms: 

0 ii xD , 0 ii xB , 0 ii xGD  and 

0 ii xGB . These equations represent the partial 

first derivatives of the electrical, magnetic, gravitational, 

and cogravitational displacement components (i.e. Di, Bi, 
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GDi, and GBi, respectively) with respect to the real space 

components xi, where the index i runs from 1 to 3. 

Besides, the governing mechanical equilibrium equation 

is also written as the following partial first derivative of 

the stress tensor components ζij with respect to the 

components xj (i and j run from 1 to 3): 0 jij x .  

 

In the theory of the wave motions of a solid material in 

dependence on time t, equations of motion can be 

described by the following common form (Dieulesaint 

and Royer, 1980; Auld, 1990; Zakharenko, 2010):  
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where ρ is the mass density of the bulk solid continuum. 

On the right-hand side in equation (41), the partial second 

derivatives of the mechanical displacement components 

Ui with respect to time t represent corresponding 

accelerations with the dimension of m/s
2
.  

 

In addition to equation of motion (41), it is necessary to 

account the electrostatics, magnetostatics, gravitostatics, 

and cogravitostatics in the quasi-static approximation:  
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It is obvious that equations (41) and (42) represent the 

coupled equations of motion in the differential form. The 

coupled equations of motion can be readily rewritten in 

the corresponding expended forms when the mechanical 

displacements Ui, electrical potential θ, magnetic 

potential ψ, gravitational potential Φ, and cogravitational 

potential Ψ are exploited. These four potentials are 

defined in the context above equation (6). Utilizing these 

four potentials for equations from (1) to (5), equations 

(41) and (42) take the following expanded forms:  
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In equations from (43) to (47), the indexes i, j, k, and l run 

from 1 to 3. These five homogeneous equations represent 

partial differential equations of the second order. They are 

actually seven equations because equation (43) can be 

also written in the form of three equations corresponding 

to the mechanical displacement components U1, U2, and 

U3. These coupled equations of motion constitute the 

wave propagation in a suitable solid continuum 

possessing the piezoelectric, piezomagnetic, 

piezoelectromagnetic, piezogravitic, piezocogravitic, 

gravitocogravitic effects and the other coeffects.  

 

Next, it is convenient to further deal with the well known 

tensor form of the coupled equations of motion that can 

be obtained from the differential form written above. First 

of all, it is required to state that these homogeneous 

partial differential equations of the second order written 

above must have natural solutions in the plane wave 

forms (Dieulesaint and Royer, 1980; Auld, 1990; 

Zakharenko, 2010). Therefore, these solutions read:  

 

  txkxkxkUU II  332211

0 jexp  (48) 

 

where the index I runs from 1 to 7.  

 

In solutions (48) there is the following: UI = Ui for I = i = 

1, 2, 3; U4 = θ, U5 = ψ, U6 = Φ and U7 = Ψ. Also, UI
0
, j = 

(–1)
1/2

, and ω stand for the initial amplitudes, imaginary 

unity, and angular frequency, respectively. The angular 

frequency ω is defined by the linear frequency ν: ω = 2πν. 

The values of U1
0
, U2

0
, U3

0
, U4

0
 = θ

0
, U5

0
 = ψ

0
, U6

0
 = Φ

0
, 

and U7
0
 = Ψ

0
 called the eigenvector components should be 

determined further. In (48), the parameters k1, k2, and k3 

represent the components of the wavevector k directed 

towards the wave propagation: 
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   321321 ,,,, nnnkkkk  , where n1, n2, and n3 are the 

directional cosines, namely n1 = 1, n2 = 0, and n3 ≡ n3. It is 

worth noting that the wavenumber k in the direction of 

wave propagation is coupled with the wavelength λ as 

follows: kλ = 2π.  

 

It is transparent that the utilization of solutions (48) and 

the directional cosines for the differential form of the 

coupled equations from (43) to (47) can actually lead to 

coupled equations written in a tensor form. These 

homogeneous equations can be naturally written in the 

following compact form of the well-known Green-

Christoffel equation (Zakharenko, 2010):   

 

  00  IphIJIJ UVGL     (49) 

 

where the indices I and J run from 1 to 7 and the phase 

velocity is defined by kVph  .  

 

In equation (49), GLIJ stands for the components of the 

modified tensor in the well-known Green-Christoffel 

equation (Zakharenko, 2010). δIJ represents the Kronecker 

delta-function with the following conditions: δIJ = 1 for I 

= J < 4, δIJ = 0 for I ≠ J, and δ44 = δ55 = δ66 = δ77 = 0. It is 

also fundamental to state that the symmetric modified 

Green-Christoffel tensor GLIJ, i.e. GLIJ = GLJI, can have 

only 28 independent tensor components. Compact form 

(49) represents the common problem for determination of 

the eigenvalues and eigenvectors. In this case, the suitable 

values of n3 for the corresponding phase velocity 

represent the eigenvalues and a corresponding eigenvector 
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should exist for each of the suitable eigenvalues.  

 

However, this report relates to the study of the SH-wave 

propagation and therefore, only suitable several equations 

must be used from common compact form (49) 

corresponding to fitting propagation directions. According 

to excellent books (Dieulesaint and Royer, 1980; Auld, 

1990), it is possible to find high symmetry propagation 

directions in crystals relating to all classes of symmetry, 

but the lowest triclinic symmetry. In such propagation 

directions, tensor form (49) can consist of two 

independent sets of homogeneous equations due to the 

fact that some GL-tensor components can become equal 

to zero when acoustic waves propagate in certain 

directions on certain cuts. In some certain directions 

(Dieulesaint and Royer, 1980; Auld, 1990) of wave 

propagation, the in-plane polarized waves can be coupled 

with the four potentials (electrical θ, magnetic ψ, 

gravitational Φ, and cogravitational Ψ potentials) and the 

anti-plane polarized (SH) waves represent purely 

mechanical waves. Therefore, the corresponding 

eigenvectors are respectively written as follows: 
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2U . In the other 

certain directions (Dieulesaint and Royer, 1980; Auld, 

1990), the in-plane polarized waves represent purely 

mechanical waves and the anti-plane polarized (SH) 

waves can be coupled with the four potentials. This case 

corresponds to the following eigenvectors:  0
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1 ,UU  and 
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This study has an interest in investigation of the pure SH-

waves in the suitable high symmetry propagation 

directions in the transversely isotropic materials of class 6 

mm. There are certain cuts and certain propagation 

directions in such materials (Dieulesaint and Royer, 1980; 

Auld, 1990; Gulyaev, 1998; Zakharenko, 2010) in which 

the propagation of the pure SH-waves can be coupled 

with the four potentials. Figure 2 shows the suitable 

propagation direction managed along the x1-axis in the 

work coordinate system (x1, x2, x3) in which the six fold 

symmetry axis is directed along the x2-axis. The work 

coordinate system was obtained from the original 

crystallographic coordinate system (x’1, x’2, x’3) in which 

the six fold symmetry axis is directed along the surface 

normal. In this case, the SH-wave has the mechanical 

displacement component U2 directed along the x2-axis. In 

the studied propagation direction, it is unnecessary to 

expand compact tensor form (49) because it actually 

decomposes into two independent parts and there is only 

an interest in the part corresponding to the pure SH-wave 

propagation.  

 

Dealing only with the suitable GL-tensor components of 

compact tensor form (49) representing the coupled 

equations of motion, the SH-wave propagation coupled 

with the four potentials can be then expressed by the 

following five homogeneous equations:  
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where 
2

31 nm   and  00000 ,,,, ΨΦU   
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In equation (50), the independent material constants for 

the case are C = C44 = C66, e = e16 = e34, h = h16 = h34, g = 

g16 = g34, f = f16 = f34, ε = ε11 = ε33, μ = μ11 = μ33, α = α11 = 

α33, γ = γ11 = γ33, ε = ε11 = ε33, ϑ = ϑ11 = ϑ33, δ = δ11 = δ33, ξ 

= ξ11 = ξ33, β = β11 = β33, λ = λ11 = λ33. The suitable 

eigenvalues n3 = k3/k can be found when the determinant 

of the coefficient matrix in equations (50) equals to zero. 

Therefore, it is possible to write down this determinant of 

the coefficient matrix already in the following convenient 

form consisting of five cofactors:  
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The first factor representing the determinant in equation 

(51) is quite complicated and the rest ones give the 

following four pairs of identical eigenvalues:  

 

j)8,7(

3

)6,5(

3

)4,3(

3

)2,1(

3  nnnn   (52) 

 

Expanding the determinant in equation (51) leads to the 

following fifth pair of the eigenvalues:  
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where  
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Expressions (54) and (55) represent the definitions for the 

four-potential shear-horizontal bulk acoustic wave (4P-

SH-BAW) and the coefficient of the 

electromagnetogravitocogravitomechanical coupling 

(CEMGCMC), respectively. This coefficient can be 

dramatically reduced for the case of δ = 0, ξ = 0, β = 0, λ = 

0 when there is no direct exchange between the electrical 

(magnetic) subsystem and gravitational (cogravitational) 

subsystem. The reduced coefficient reads:  
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where  
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Definitions (59) and (60) stand for the coefficient of the 

magnetoelectromechanical coupling (CMEMC) and the 

coefficient of the gravitocogravitomechanical coupling 

(CGCMC), respectively. They depend on the following 

corresponding coupling mechanisms:  

 

 heM 1      (61) 

 heM 2     (62) 

2

3  M      (63) 

 fgM 4     (64) 

 fgM 5     (65) 

2

6  M      (66) 

 

The coupling mechanisms M1, M2, and M3 are discussed 

in (Zakharenko, 2013c) and the others are introduced in 

this study. Using reduced coefficient (58), the reduced 4P-

SH-BAW speed can be inscribed as follows:  
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  2/12** 1 emgctemgc KCV      (67) 

 

With known eigenvalues (52) and (53), it is now possible 

to find all the suitable eigenvectors. This is a quite 

complicated problem. Therefore, the appendix below lists 

all the suitable eigenvectors. The reader can find in the 

appendix that there are several suitable cases. Using the 

eigenvalues and the corresponding eigenvectors, it is 

possible to write down the complete parameters based on 

expression (48) and to exploit them in the apt boundary 

conditions. This is the purpose of the following section.  

 

Boundary conditions leading to new SH-SAW  

 

First of all, based on definition (48), it is indispensable to 

write down the explicit forms for the following complete 

parameters in the plane wave forms: the complete 

mechanical displacement 
 UU2

, complete electrical 

potential 
 4U , complete magnetic potential 

 5U , complete gravitational potential 
 ΦU 6 , 

and complete cogravitational potential 
 ΨU 7 . These 

complete parameters are very important and used further 

to construct the determinants of the boundary conditions. 

These complete parameters can be naturally introduced in 

the following forms:  
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where F = F
(1)

 + F
(3)

 + F
(5)

 + F
(7)

 and F9 = F
(9)

.  

 

It is clearly seen in the complete parameters written above 

that one deals here with a five-partial wave because each 

complete parameter must be formed by five terms due to 

the summation over the index s = 1, 3, 5, 7, 9. This 

summation corresponds to five suitable eigenvalues of ten 

defined by expressions (52) and (53). The suitable 

eigenvalues n3 are those with a negative sign (x3 < 0 in the 

solid shown in Figure 2. In order to have the wave 

damping towards the depth of the solid because this report 

has an interest in a study of surface wave propagation 

localized at the interface between two different continua, 

namely a vacuum and the solid. This is usual thing for 

investigation of surface wave propagation in solids 

(Dieulesaint and Royer, 1980; Auld, 1990; Zakharenko, 

2010). So, for these five-partial waves there are the 

following five weight factors F
(1)

, F
(3)

, F
(5)

, F
(7)

, and F
(9)

. 

The complete parameters depend on them. However, it is 

clearly seen in expression (52) that there are four identical 

eigenvalues n3 and they will give the same eigenvectors. 

As a result, all the complete parameters can be written 

down in convenient and simplified forms with only two 

weight factors such as F and F9 defined right away after 

expression (72). With F and F9, it is possible to conclude 

that these five-partial waves can be introduced as some 

hidden two-partial waves. This fact can be used further 

for determination of the propagation velocity of the 

acoustic waves coupled with the four potentials: four-

potential shear-horizontal surface acoustic wave or 4P-

SH-SAW.  

 

The boundary conditions used in this theoretical report 

relates to the interface between a vacuum and the solid. 

The mechanical boundary condition for the mechanical 

subsystem is the mechanically free surface of the solid, 

i.e. the normal component of the stress tensor ζ32 must 

vanish at the interface between the solid surface and a 

vacuum: ζ32(x3 = 0) = 0. Using expression (1), this 

condition reads:  
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The electrical boundary condition for the electrical 

subsystem is that the electrical potential must vanish at x3 

= 0, i.e. 0
9,7,5,3,1

)(0)(  
s

ssF   representing the electrically 

closed case (Al’shits et al., 1992). The magnetic boundary 

condition at x3 = 0 for the magnetic subsystem is as 

follows: 0
9,7,5,3,1

)(0)(  
s

ssF   representing the 

magnetically open case (Al’shits et al., 1992). 

Analogically, for the gravitational subsystem and the 

cogravitational subsystem it is possible to require that 

both the gravitational and cogravitational potentials must 

vanish at the interface x3 = 0: 0
9,7,5,3,1

)(0)(  
s

ss ΦFΦ  
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and 0
9,7,5,3,1

)(0)(  
s

ss ΨFΨ . It is thought that these 

boundary conditions are the most simple and more 

complicated boundary conditions will be not treated in 

this report.  

 

Therefore, these five boundary conditions lead to five 

homogeneous equations written the following matrix 

form:  
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      (73) 

where  21 temgcph VVb  .  

 

It is well-known that a set of homogeneous equations has 

a solution when the determinant of the coefficient matrix 

is equal to zero. The experienced reader can find that the 

determinant of the coefficient matrix in expression (73) is 

always equal to zero because the first, second, third, and 

fourth columns of the determinant are identical due to 

four identical eigenvalues (52). It is obvious that the 

identical eigenvalues give identical eigenvector 

components that can be found in the appendix, for 

instance, see in definitions (A18) and (A19) or (A30) and 

(A31), or the others. Indeed, it is well-known fact that a 

matrix determinant is equal to zero when there are two 

(several) identical columns or two (several) identical 

rows. This is also true when a column represents a linear 

combination of two (several) columns and or a row 

represents a linear combination of two (several) rows. 

However, this fact that there are identical columns in 

expression (73) does not determine the propagation 

velocity because all the eigenvector components do not 

depend on the propagation velocity, i.e. the phase velocity 

Vph that must be found. The main peculiarity of the 

studied case is that only the factor b defined right away 

after equation (73) depends on the Vph. The factor b is 

only present in the first row and the last column of the 

matrix determinant. For the sound determination of the 

propagation velocity, one has to treat the rows instead of 

the columns of the matrix determinant in (73). It is blatant 

that the first row actually represents a linear combination 

of all the rest rows. Indeed, the reader can successively 

subtract the second, third, fourth, and fifth rows with the 

factors of e, h, g, and f, respectively, from the first row 

and the certain value for the propagation velocity can be 

soundly obtained.  

For this purpose, it is convenient to deal with an 

equivalent set of two instead of five homogeneous 

equations. With the five homogeneous equations written 

in matrix form (73) and the weight factors F and F9 

defined after expression (72), it is possible to introduce 

the following equivalent set of two homogeneous 

equations for the determination of the propagation 

velocity:   
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      (74) 

 

It is clearly seen in reduced set (74) that the first row in 

reduced set (74) represents the first row on complete set 

(73) and the second row in set (74) represents a linear 

combination of the rest rows in set (73). It is obvious that 

in reduced set (74), it is unnecessary to use the second, 

third, and fourth columns from complete set (73) because 

they are identical to the first column. This is the usual 

procedure to reduce a complicated set of equations by 

replacing it with a more simplified but equivalent set of 

equations. This can be convenient when more 

complicated case can be treated in the future. Exploiting 

reduced set (74), the propagation velocity can be 

determined from the following common form:  
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All the eigenvector components such as U
0(9)

, θ
0(9)

, ψ
0(9)

, 

Φ
0(9)

, and Ψ
0(9)

 can be found in the appendix that offers 

six different cases, each of which contains two pairs of 

different eigenvectors. Also, the weight factors F and F9 

can be determined from the first equation in set (74). 

They can be exposed as follows:  

 

 )9(0)9(0)9(0)9(0)9(0 fΨgΦheCUbF    (76) 

)1(0)1(0)1(0)1(0

9 fΨgΦheF     (77) 

 

Expression (75) can be also obtained from complete set 

(73) by a successive subtraction of the second, third, 

fourth, and fifth rows with the factors of e, h, g, and f, 

respectively, from the first row. This was already 

mentioned in the context above expression (74). The 

reader can check that the utilization of any of possible 

eigenvectors given in the appendix by formulae (A19) and 

(A31) soundly leads to the following propagation velocity 

of the new 4P-SH-SAW:  
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where the 4P-SH-BAW velocity Vtemgc and the coefficient 

of the electromagnetogravitocogravito mechanical 

coupling (CEMGCMC) 
2

emgcK  are respectively defined 

by formulae (54) and (55).  

 

Also, the CEMGCMC 
2

emgcK  can be dramatically 

reduced for the case of δ = 0, ξ = 0, β = 0, λ = 0. This is 

the case of no direct exchange between the electrical 

(magnetic) subsystem and gravitational (cogravitational) 

subsystem. For this case, the reduced CEMGCMC 
2*

emgcK  

defined by (58) must be used along with the other 4P-SH-

BAW velocity 
*

temgcV  defined by formula (67). Therefore, 

the value of the new 4P-SH-SAW velocity can be 

calculated with the following formula:  
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where the coefficient of the magnetoelectromechanical 

coupling (CMEMC) 
2

emK  and the coefficient of the 

gravitocogravito mechanical coupling (CGCMC) 
2

gcK  

are respectively defined by (59) and (60).  

 

It is also necessary to discuss the case when the 

gravitational and cogravitational effects can be neglected, 

i.e. the material parameters g = 0 and f = 0 resulting in 

02 gcK . For this case, reduced velocity (84) further 

reduces to the velocity VBGM of the surface Bleustein-

Gulyaev-Melkumyan (BGM) wave (Melkumyan, 2007; 

Zakharenko, 2010, 2013a) discovered by Melkumyan 

(2007). This velocity reads:  
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where   2/121 emtem KCV    stands for the SH-

BAW velocity coupled with both the electrical and 

magnetic potentials.  

 

The surface BGM wave can propagate in the 

piezoelectromagnetic smart materials, in which more than 

ten SH-SAWs were recently discovered pertaining to 

different boundary conditions. This report has no purpose 

to treat the other boundary conditions different from those 

used in this section. Indeed, the four-potential wave 

propagation is significantly more complicated case 

compared with the wave propagation in 

piezoelectromagnetic materials. Also, one can find in 

formula (80) that a substitution of 
2

gcK  instead of 
2

emK  

can result in the existence of new piezogravitoco  

gravitational wave because neither Bleustein nor Gulyaev, 

nor Melkumyan has studied the gravitational effects. 

However, none has reported that such wave can be 

recorded at the current level of experimental 

development. Maybe this is a problem for this (next) 

century.  

 

The connection between the surface BGM wave and the 

well-known surface Bleustein-Gulyaev (BG) wave can be 

also discussed. Indeed, h = 0 results in 

CeKK eem

222   and   2/121 etetem KCVV    

in formula (80). The coefficient of the electromechanical 

coupling 
2

eK  and the velocity teV  of the SH-BAW 

coupled with the electrical potential θ are the 

characteristics for a pure piezoelectrics. On the other 

hand, e = 0 results in ChKK mem

222   and 

  2/121 mtmtem KCVV    in formula (80). This 

is the case of the wave propagation in a pure 

piezomagnetics characterized by the coefficient of the 

magneto mechanical coupling 
2

mK  and the velocity tmV  

of the SH-BAW coupled with the magnetic potential ψ. 

Therefore, the velocity of the surface BG-wave 

propagating in a pure piezoelectrics or pure 

piezomagnetics can be calculated with the following well-

known formulae (Bleustein, 1968; Gulyaev, 1969):  
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For the case when some suitable materials can possess the 

mechanical, magnetic, and gravitational subsystems, 

formula (80) must be replaced by formula (83) written 

below. This can be the case analogical to the 

experimentally realized one by Professor André Füzfa 

(2016) when the magnetic and gravitational forces can 

interact, i.e. the gravitational field can be controlled by 

the magnetic field. If the magnetic subsystem can interact 

with the cogravitational subsystem, the final expression 

for the new propagation velocity is given by formula (84) 

written below.  

 
2/1

2

2

2

1
1

1































mg

mg

tmgnew
K

K
VV   (83) 

2/1
2

2

2

2
1

1




























mc

mc
tmcnew

K

K
VV   (84) 

 

where   2/121 mgtmg KCV    stands for the 

velocity of the SH-BAW coupled with both the magnetic 

and gravitational potentials and 

  2/121 mctmc KCV    stands for the velocity of the 

SH-BAW coupled with both the magnetic and 

cogravitational potentials.  

 

In formula (83), the introduced material parameter 
2

mgK  

can be called the coefficient of magnetogravito 

mechanical coupling (CMGMC). In expression (84), the 

introduced material parameter 
2

mcK  can be analogically 

called the coefficient of magnetocogravito mechanical 

coupling (CMCMC). They are respectively defined by  
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In definitions (85) and (86), the following corresponding 

mechanisms of coupling are introduced:  

 

 hgM 7     (87) 

 hgM 8
    (88) 

2

9  M      (89) 

 hfM 10     (90) 

 hfM 11     (91) 

2

12  M     (92) 

 

CONCLUSION  

 

This theoretical report has predicted the existence of the 

new four-potential shear-horizontal surface acoustic wave 

(4P-SH-SAW) propagation in suitable solids when the 

wave motion is coupled with the following four 

potentials: the electrical potential θ, magnetic potential ψ, 

gravitational potential Φ, and cogravitational potential Ψ. 

The velocity of the new 4P-SH-SAW was obtained in an 

explicit form. The obtained theoretical results can be used 

for further development of some problems of gravitation, 

the problem of 4P-SH-wave propagation in plates, and 

constitution of smart technical devices. This can usher 

gravitation into a new experimental and industrial era.  

 

ACKNOWLEDGEMENTS  

 

The author is thankful to the referees for their valuable 

comments and suggestions to improve the quality of the 

paper for the Journal reader. The author is also thankful to 

the participants (Professor Dr. A.F. Sadreev, Professor Dr. 

V.I. Zinenko, Professor Dr. S.I. Burkov and Dr. P.P. 

Turchin) of the workshop on the 8
th

 of April, 2015 at the 

SB RAS L.V. Kirensky Institute of Physics, Krasnoyarsk, 

Siberia, Russia, for some useful notes and fruitful 

discussion.  

 

Appendix I.  

 

To find all the suitable eigenvectors corresponding to 

found eigenvalues (52) and (53), it is necessary to treat 

equations’ set (50) anew. It is natural to utilize the first 

equation in set (50) for determination of the first 

eigenvector component U
0
 as a function of the rest 

components θ
0
, ψ

0
, Φ

0
, and Ψ

0
. So, this dependence reads:  

 

  CAfΨgΦhemU 00000    (A1) 

 

where 
2

31 nm   and  
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Utilization of definition (A1) for equations’ set (50) 

allows one to exclude the eigenvector component U
0
 from 

the further consideration and to deal with a reduced set of 

equations. This is the usual mathematical procedure for 
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finding of the unknowns for the set of five equations in 

five unknowns. It is also useful to state that formulae (A2) 

are also applicable for the problem of finding of suitable 

eigenvectors when the wave propagation in 

piezoelectromagnetics (Zakharenko, 2010; Zakharenko, 

2013a,b; Zakharenko, 2015a,b) (i.e. 
22

ememgc KK  ) is 

investigated.  

 

I.A1. The first order of equations  
 

So, the new set of four homogeneous equations can be 

written as follows:  
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where  
 

CeKe

22       (A4) 

 CehK 2
     (A5) 

 CegK 2
     (A6) 

 CefK 2
     (A7) 

ChKm

22       (A8) 

 ChgK 2
     (A9) 

 ChfK 2
                (A10) 

CgK g

22                  (A11) 

 CgfK 2
                (A12) 

CfK f

22                  (A13) 

 

Next, from the first equation in set (A3) it is possible to 

determine the second eigenvector component θ
0
 as a 

function of the components ψ
0
, Φ

0
, and Ψ

0
. It can be 

composed as follows:  

 
 

 
 

 
 

0

2

2

0

2

2

0

2

2
0 Ψ

mKA

mKA
Φ

mKA

mKA

mKA

mKA

eee 




























  (A14) 

 

Definition (A14) for θ
0
 can be then utilized in set (A3) to 

reduce the set of four homogeneous equations in four 

undetermined. Indeed, it is natural to use definition (A14) 

for the second, third, and fourth equations in set (A3). As 

a result, the new reduced set of three homogeneous 

equations with three unknown components ψ
0
, Φ

0
, and Ψ

0
 

read:  
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Exploiting the first equation in set (A15), the third 

eigenvector component ψ
0
 represents the following 

function of the eigenvector components Φ
0
 and Ψ

0
:  
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Finally, function ψ
0
(Φ

0
, Ψ

0
) (A16) must be used for 

substitution in the second and third equations in set (A15). 

This substitution results in the final two homogeneous 

equations in two unknowns Φ
0
 and Ψ

0
 that already can be 

readily used for definition of both Φ
0
 and Ψ

0
. These two 

complicated equations can be composed in the following 

forms:   
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Equations’ set (A17) represents a set of two homogeneous 

equations in two unknowns Φ
0
 and Ψ

0
. This pair of 

equations can be schematically written as follows: a1x + 

by = 0 and bx + a2y = 0. Therefore, the unknowns x and y 

can be chosen in two different ways: (1) x = – b and y = 

a1; (2) x = a2 and y = – b. Taking into account this fact it 

is natural to write down below two different sets (i1) and 

(ii1) of the eigenvector components for the case of 

equations (A3).   

 

 (i1) The first eigenvectors for case (A3)  

 

The first eigenvectors can be composed with the first 

equation in set (A17) and definitions (A1), (A14), and 

(A16). For eigenvalues (52), m = 0 and therefore, the 

corresponding eigenvector components are relatively 

simple. So, these eigenvector components are  
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However, for eigen value (53) there is a more complicated 

eigenvector. For this case, the parameter A defined by 

expression (A2) does not depend on the propagation 

velocity. Therefore, the utilization of the corresponding 

parameter A (A2), the first equation in set (A17), and 

definitions (A1), (A14), (A16) leads to the following 

complicated eigenvector components:  

 

 





















































































































































2

22

2

2

22

2

22

2

0

22

22

22

0

0

22

0

22

0

0000

200000

)9(0

)9(0

)9(0

)9(0

)9(0

emgcE

A

emgc

M

emgcE

ZA

emgc

B

emgcE

Z

emgc

G

E

A
M

E

SA
L

emgcE

ZA

emgc

B

emgcE

ZS

emgc

T

E

A
M

E

SA
L

E

A
M

E

ZA
B

E

S

E

Z

E

A

emgc

KK

K

K

K

KK

KK

K

K

KK

K

K

K
Ψ

K

K
K

K

KK
K

KK

KK

K

K

KK

KK

K

K
Φ

Ψ

K

K
K

K

KK
K

Φ

K

K
K

K

KK
K

Ψ
K

K
Φ

K

K

K

K

CKfΨgΦheU

Ψ

Φ

U








































































  

(A19) 

 

where  

 
22

eemgcE KKK                  (A20) 

22

memgcM KKK                  (A21) 

22

gemgcG KKK                  (A22) 
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22

femgcF KKK                  (A23) 

22

KKK emgcA                  (A24) 

22

KKK emgcT                  (A25) 

22

KKK emgcB                  (A26) 

22

KKK emgcZ                  (A27) 

22

KKK emgcS                  (A28) 

22

KKK emgcL                  (A29) 

 

(ii1) The second eigenvectors for case (A3)  

 

To obtain the second eigenvectors, it is necessary to use 

the same equations that were used for the composition of 

the first eigenvectors, but the first equation in set (A17). 

Here, the second equation in set (A17) is used instead of 

the first equation. Therefore, two eigenvectors 

corresponding to eigenvalues (52) and (53) can be 

respectively inscribed as follows:  
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